Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Conserv Physiol ; 8(1): coaa019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274066

RESUMO

The field of conservation physiology strives to achieve conservation goals by revealing physiological mechanisms that drive population declines in the face of human-induced rapid environmental change (HIREC) and has informed many successful conservation actions. However, many studies still struggle to explicitly link individual physiological measures to impacts across the biological hierarchy (to population and ecosystem levels) and instead rely on a 'black box' of assumptions to scale up results for conservation implications. Here, we highlight some examples of studies that were successful in scaling beyond the individual level, including two case studies of well-researched species, and using other studies we highlight challenges and future opportunities to increase the impact of research by scaling up the biological hierarchy. We first examine studies that use individual physiological measures to scale up to population-level impacts and discuss several emerging fields that have made significant steps toward addressing the gap between individual-based and demographic studies, such as macrophysiology and landscape physiology. Next, we examine how future studies can scale from population or species-level to community- and ecosystem-level impacts and discuss avenues of research that can lead to conservation implications at the ecosystem level, such as abiotic gradients and interspecific interactions. In the process, we review methods that researchers can use to make links across the biological hierarchy, including crossing disciplinary boundaries, collaboration and data sharing, spatial modelling and incorporating multiple markers (e.g. physiological, behavioural or demographic) into their research. We recommend future studies incorporating tools that consider the diversity of 'landscapes' experienced by animals at higher levels of the biological hierarchy, will make more effective contributions to conservation and management decisions.

2.
Bol. micol. (Valparaiso En linea) ; 33(1): 32-56, jun. 2018. tab
Artigo em Espanhol | LILACS | ID: biblio-905024

RESUMO

El estudio de los procesos biogeoquímicos implica entender cómo los macro y micro nutrientes que componen los seres vivos se mueven de un componente a otro del ecosistema (incluyendo la atmósfera, organismos, suelo, cuerpos de agua, etc.). Usualmente, una mayor diversidad biótica y una mayor complejidad de las interacciones bióticas y abióticas, resultan en una mayor estabilidad ecosistémica. El rol de los hongos en los ciclos biogeoquímicos se suele estudiar superficialmente, no mucho más allá de sus funciones ecosistémicas generales: descomposición, simbiosis mutualista, y parasitismo. Esta revisión tiene por objetivo ilustrar los conceptos base de los roles ecológicos de los hongos del suelo, que debieran enseñarse en tres públicos objetivo: universitario, tomadores de decisiones, y estudiantes de educación secundaria/público general. En estos públicos, se propone abordar cuatro áreas temáticas: introducción al suelo, ecología de comunidades, interacciones de hongos con otros organismos, y biogeoquímica. Aunque los roles ecosistémicos de los hongos del suelo están bien documentados, su estudio debería partir de la base de que estos afectan y son afectados tanto por variables climáticas, como por características físico-químicas del suelo, y por flujos biogeoquímicos. Los roles ecológicos de los hongos del suelo debieran entenderse en un contexto holístico de integración multidisciplinar, y el nivel de especialización del conocimiento debiera darse hacia niveles superiores de la jerarquía biológica, es decir, conocer más en detalle la ecología de ecosistemas y comunidades de hongos que la de poblaciones y organismos, o que sus procesos bioquímicos y edáficos específicos.


The study of biogeochemical processes involves understanding how the macro and micro nutrients that make up living things move from one ecosystem component to another (including the atmosphere, organisms, soil, waterbodies, etc.). Usually, a greater diversity of biotic diversity and a greater complexity of biotic and abiotic interactions, result in a greater ecosystemic stability. The role of fungi in biogeochemical cycles is usually studied superficially, not much beyond their general ecosystem functions: decomposition, mutualistic symbiosis, and parasitism. The objective of this review is to illustrate the basic concepts of the ecological roles of soil fungi, which should be taught in three target audiences: university students, decision makers, and secondary school students / general public. In these audiences, it is proposed to address four thematic areas: introduction to soil, community ecology, interactions of fungi with other organisms, and biogeochemistry. Although the ecosystemic roles of soil fungi are well documented, their study should be based on the fact that they affect and are affected by climatic variables, physical-chemical soil characteristics, and biogeochemical flows. The ecological roles of soil fungi should be understood in an holistic context of multidisciplinary integration, and the level of specialization of knowledge should be given to higher levels of the biological hierarchy, that is, to know more in detail the ecology of ecosystems and communities of fungi than that of populations and organisms, or than that of their specific biochemical and edaphic processes.


Assuntos
Ecologia/educação , Fungos , Micorrizas , Biologia de Sistemas/classificação , Ecossistema , Química do Solo
3.
Acta biol. colomb ; 21(3): 467-472, set.-dic, 2016. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-827624

RESUMO

For over five decades the dominant neo-Darwinian view is that natural selection acts only at the genic and organismal levels, but the ignored empirical evidence of multilevel selection occurring in nature obtained over the last fifty years does not agree with it. A long exchange of mathematical and theoretical arguments about the levels at which natural selection acts constitutes what is known as the 'levels of selection debate'. The large amount of empirical evidence, studied by quantitative genetics means, specifically contextual analysis, indicates that natural selection acts on levels of the biological hierarchy above and below that of the gene and organism, from the molecular to the ecosystem level, thus supporting what is called the multilevel selection theory. Beyond theoretical arguments, if empirical evidence for multilevel selection and contextual analysis results are carefully examined, the debate on the levels of selection is easily resolved: natural selection occurs in nature at different levels of biological hierarchy. This text provides an overview of such empirical evidence.


Por más de cinco décadas la visión neo-darwinista dominante de la selección natural es que esta actúa únicamente a nivel génico y organísmico, pero la ignorada evidencia empírica de selección multinivel ocurriendo en la naturaleza obtenida durante los últimos cincuenta años no es consecuente. Un largo intercambio de argumentaciones matemáticas y teóricas sobre los niveles en los que actúa la selección natural constituye lo que se denomina como el "debate de los niveles de selección". La gran cantidad de evidencia empírica, estudiada mediante métodos de genética cuantitativa, específicamente el análisis contextual, indica que la selección natural actúa en niveles de la jerarquía biológica por encima y por debajo del nivel del gen y organismo, desde el nivel molecular hasta el ecosistémico, apoyando así lo que se denomina la teoría de selección multinivel. Más allá de argumentos teóricos, si se examina cuidadosamente la evidencia empírica de selección multinivel y los resultados del análisis contextual, se resuelve de forma sencilla el debate de los niveles de selección: la selección natural ocurre en la naturaleza en diferentes niveles de la jerarquía biológica. Este texto ofrece una revisión general de dicha evidencia empírica.

4.
Stud Hist Philos Biol Biomed Sci ; 49: 24-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462872

RESUMO

There is a worry that the 'major transitions in evolution' represent an arbitrary group of events. This worry is warranted, and we show why. We argue that the transition to a new level of hierarchy necessarily involves a nonselectionist chance process. Thus any unified theory of evolutionary transitions must be more like a general theory of fortuitous luck, rather than a rigid formulation of expected events. We provide a systematic account of evolutionary transitions based on a second-order regularity of chance events, as stipulated by the ZFEL (Zero Force Evolutionary Law). And in doing so, we make evolutionary transitions explainable and predictable, and so not entirely contingent after all.


Assuntos
Evolução Biológica , Probabilidade , Seleção Genética , Animais , Cães/genética , Cães/fisiologia , Voo Animal , Aptidão Genética
5.
J Evol Biol ; 27(9): 1784-96, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-24976004

RESUMO

The biological hierarchy of genes, cells, organisms and societies is a fundamental reality in the living world. This hierarchy of entities did not arise ex nihilo at the origin of life, but rather has been serially generated by a succession of critical events known as 'evolutionary transitions in individuality' (ETIs). Given the sequential nature of ETIs, it is natural to look for candidates to form the next hierarchical tier. We analyse claims that these candidates are found among 'supercolonies', ant populations in which discrete nests cooperate as part of a wider collective, in ways redolent of cells in a multicellular organism. Examining earlier empirical work and new data within the recently proposed 'Darwinian space' framework, we offer a novel analysis of the evolutionary status of supercolonies and show how certain key conditions might be satisfied in any future process transforming these collaborative networks into true Darwinian individuals.


Assuntos
Formigas , Comportamento Animal , Evolução Biológica , Animais , Aptidão Genética , Modelos Biológicos , Seleção Genética
6.
Biol Lett ; 9(6): 20130491, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24132096

RESUMO

Can evolutionary and ecological dynamics operating at one level of the biological hierarchy affect the dynamics and structure at other levels? In social insects, strong hostility towards unrelated individuals can evolve as a kin-selected counter-adaptation to intraspecific social parasitism. This aggression in turn might cause intraspecific competition to predominate over interspecific competition, permitting coexistence with other social insect species. In other words, kin selection-a form of intra-population dynamics-might enhance the species richness of the community, a higher-level structure. The converse effect, from higher to lower levels, might also operate, whereby strong interspecific competition may limit the evolution of selfish individual traits. If the latter effect were to prove more important, it would challenge the common view that intra-population dynamics (via individual or gene selection) is the main driver of evolution.


Assuntos
Formigas/fisiologia , Aptidão Genética , Especificidade da Espécie , Animais , Comportamento Animal , Evolução Biológica , Comportamento Competitivo , Ecologia , Feminino , Insetos , Masculino , Dinâmica Populacional , Reprodução , Seleção Genética , Comportamento Sexual Animal , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...